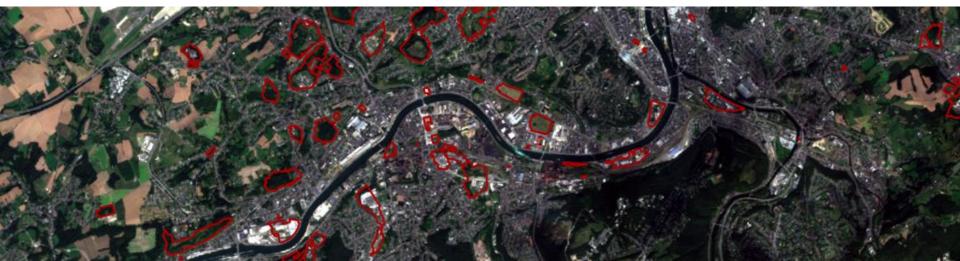
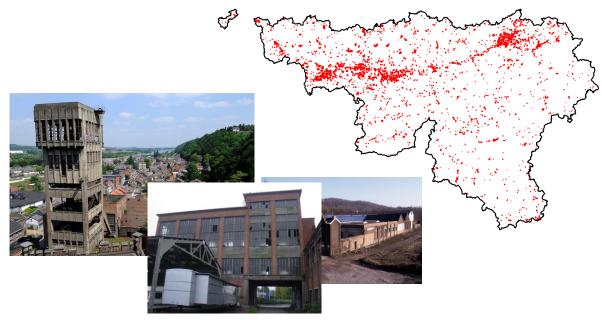


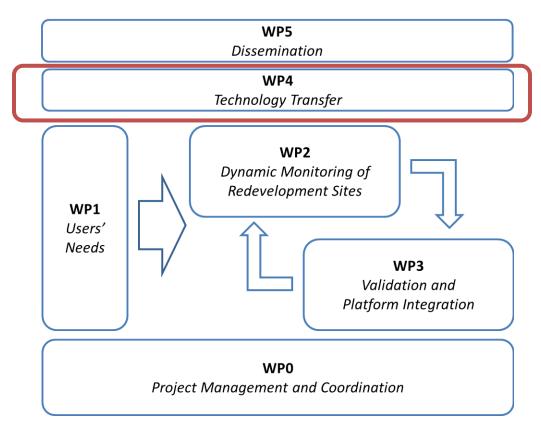
SARSAR – SR/00/372


Automatic redevelopment sites monitoring using SAR and OPTICAL images

Introduction



Steering Committee Meeting - 19th March 2021


Introduction

2,200+RDSs over 3800ha in Wallonia

- Project goals
 - Contribute to the RDSs inventory update
 - Reduce and optimize the time spent on the inventory update
 - Provide up-to-date and accurate information to the actors involved, especially for those who access the online version
- \rightarrow Need for an automatic tool

Work Packages

Work package	YEAR 1 YEAR 2														
WP 0:															
WP 1:															
WP 2:															
WP 3:															
WP 4:															
WP 5:	Γ			Γ	Γ										

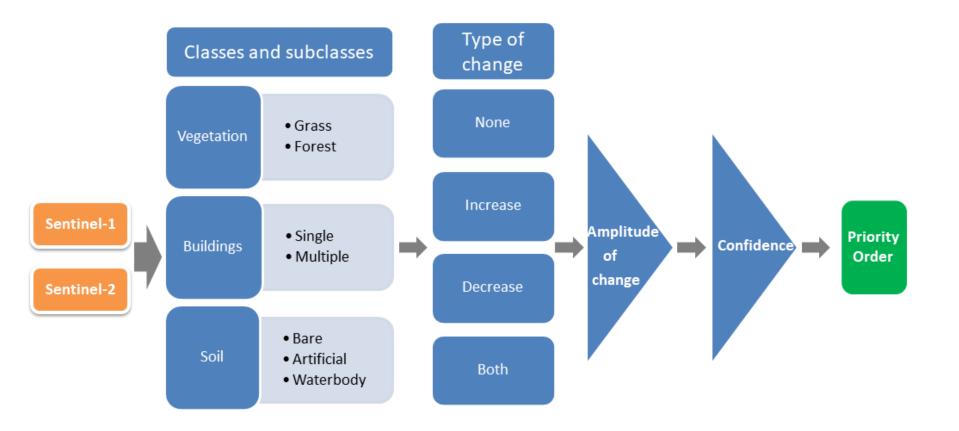
WP1 – Users' Needs: summary

- Users' needs
 - Lower costs by limiting the number of sites to be verified in person
 - Automate, as much as possible, change detection
 - Facilitate the work of the operators by pre-identifying the elements to check
 - Decrease the subjectivity of the operator

WP1 – Users' Needs: summary

Answers to the needs

- Must have:


List of the sites with their probability of change

– <u>Nice to have</u>:

Change confidence score for each site based on a selection of pre-established scenarios (categories and types of changes). Importance of taking into account specific situations where no long-term change may mean that the site is maintained (e.g. pasture/meadow)

WP1 – Users' Needs: summary

Categories and types of change

WP1 – Users' needs and requirements

• Summary of the proposed solutions

Requirements		Proposed solutions
		• 1X/year
Deadlines		• On demand
		• Nice to have: 1X/2months
		Python Scripts
	Method	Terrascope Interface
		Results sent via email
Tool		CSV or TXT files with ID & Priority order
	Format	More details on demand
	Format	• Nice to have: WFS
		 Nice to have: alert system on the RDSs website

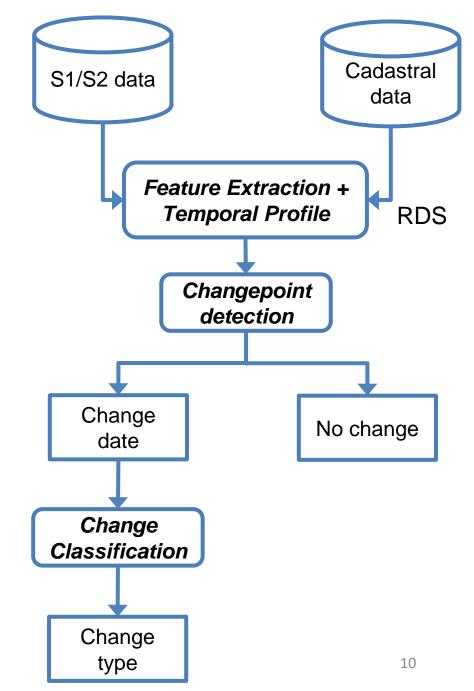
SARSAR – SR/00/372

belspo

Automatic redevelopment sites monitoring using SAR and OPTICAL images

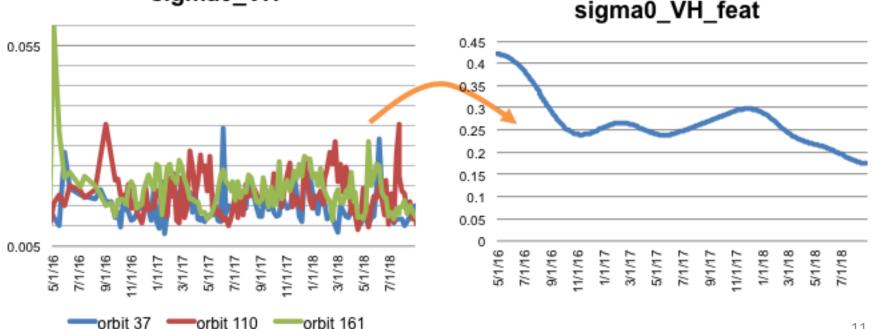
WP2 – Dynamic Monitoring of Redevelopment Sites WP3 – Validation and Platform Integration

Steering Committee Meeting - 19th March 2021


Overview

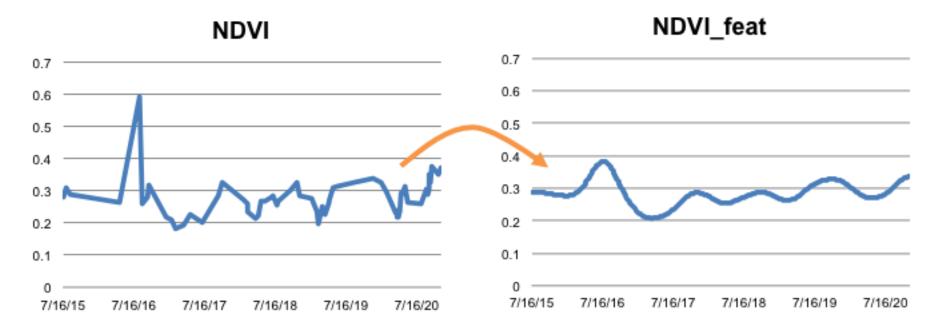
- 1. Methodology
- 2. Feature extraction
- 3. Changepoint detection
- 4. Change Classification
- 5. Platform integration

1. Methodology


- Input:
 - S1 (Sigma0)/S2 (ToC) from Terrascope Catalogue
 - Shapefile of the RDS

- a) Feature extraction + Generation of temporal profiles
- b) Changepoint detection
- c) Change classification

2. Feature extraction – Sentinel-1


- Sentinel-1 time series \bullet
 - IW GRD \rightarrow sigma0
 - Interpolation
 - Gaussian smoothing
 - All available orbits \rightarrow average

sigma0_VH

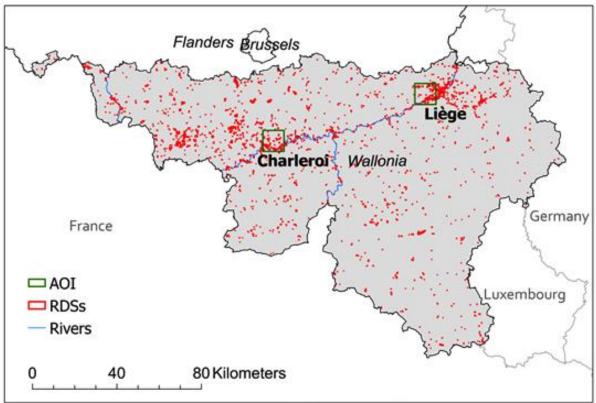
2. Feature extraction – Sentinel-2

- Sentinel-2 time series
 - L1C \rightarrow iCor/Sen2Cor \rightarrow L2A
 - Tile Cloud cover < 25%
 - RDS Cloud/shadow/snow = 0% (scene classification)
 - Interpolation
 - Gaussian smoothing
 - 13 Multi-spectral indexes (NDVI, SAVI, NDWI, NDWI2, NDBI, NBAI, NBI, BAI, BI, BI2, CI, BSI & SBI)

3. Changepoint detection

- Pruned Exact Linear Time (PELT) method [1]
 - It provides an exact segmentation of the time series with a linear time complexity.

Given a time series $s = (s_1, ..., s_k)$, the number n and time position $t_{1:n} = (t_1, ..., t_n)$ of the changepoints is obtained by solving the penalized minimization problem


$$Q_n(s_{1:k}, p) = \min_{n, t_{1:n}} \left\{ \sum_{i=1}^{n+1} [C(s_{(t_{i-1}+1):t_i})] + p \right\}$$

where *C* is a segment-specific cost function, and *p* a penalty term to control overfitting. For our analysis we have used $C(s_{a:b}) = \sum_{i=a+1}^{b} \|s_i - \overline{s}_{a:b}\|_2^2 \text{ suitable for mean-shifts and } p = \log(k)$

[1] R. Killick, P. Fearnhead, and I. Eckley, "Optimal detection of changepoints with a linear computational cost", Journal of the American Statistical Association, 107(500):1590–1598, 2012

3. Validation strategy

- Two phases:
 - Development based on 22 sites within the urban areas of Charleroi and Liège (green squares)
 - Feature selection
 - Change detection
 - Types of change
 - Extensive tests on the full dataset (2291 RDS, red marks)

3. Change detection – Phase 1 (22 sites)

Ground truth

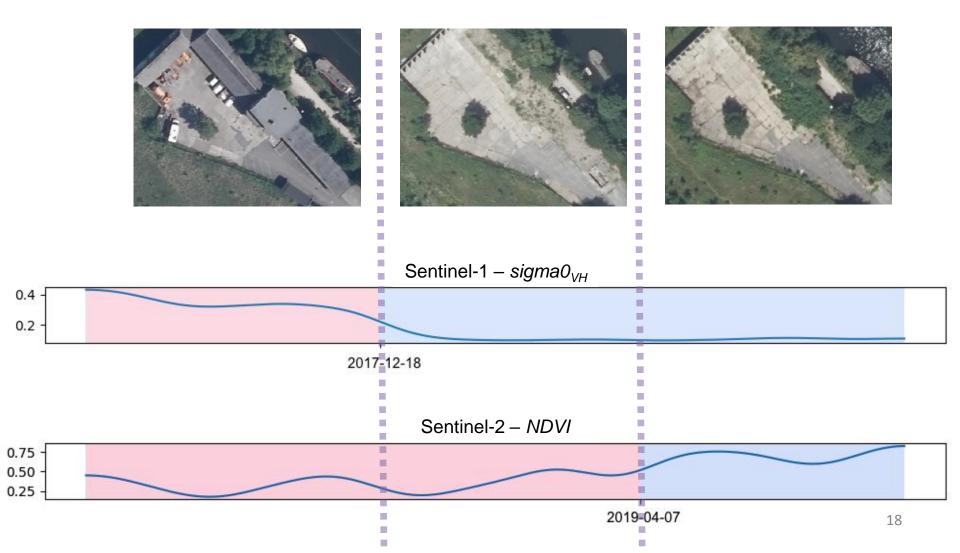
- year-on-year changes in vegetation, buildings and soil
 - 0 = no change
 - 1 = change (same surface)
- \rightarrow 31 changes, 57 no changes

- 2 = increase
- 3 = decrease

					Orthophot	05	Pleiades	c 1
ID_Segment	NA	ME	2	016-2017	2017-201	8 2018-2019	2019-202(Change
52011-ISA-0015-01	Administration Cocker	ill		000	000	000	000	0 0 0 0
52011-ISA-0032-01	Cinema-Theatre Varia			000	000	000	000	0 0 0 0
52011-ISA-0040-01	Cordial Bowling			000	203	000	302	0 1 0 1
52012-ISA-0011-01	Hangars Vanbelle			332	001	023	000	1 1 1 0
52012-ISA-0017-01	Charbonnage n10 du (Gouffre		000	000	000	000	0 0 0 0
52021-ISA-0007-01	Cha						000	0 0 0 0
52021-ISA-0008-01	Cha	Destilation			Coll A		000	0 0 0 0
62003-ISA-0004-01	Ets Year	Building	veget	tation	Soil A	ggregate	001	0 0 0 1
62063-ISA-0034-01	Rer 2016/2017	5	6	5	7	7	000	0 1 0 0
62063-ISA-0037-01	Par 2017/2018	3	5	3	11	11	000	0 1 1 0
62063-ISA-0098-01							000	1 0 0 0
62063-ISA-0181-01	Cer 2018/2019	2	4	1	5	6	000	0 0 0 0
62063-ISA-0189-01	Cig: 2019/2020	2	5	5	6	7	000	0 0 0 0
62063-ISA-0201-01	Bat 2016-2020	12	2	3	29	31	000	0 0 0 0
	Ma 2010-2020	12	2		25	31	320	0 1 1 1
62063-ISA-0247-01	Sen						000	0 1 1 0
62093-ISA-0026-01	Puits de mine - rue Re	nson		000	000	000	000	0 0 0 0
62096-ISA-0038-01	Verreries Liegeoises			000	203	000	302	0 1 0 1
62096-ISA-0039-01	Ets Linotte			332	203	203	203	1 1 1 1
62096-ISA-0052-01	Haut Fourneau 6			302	203	000	332	1 1 0 1
62096-ISA-0056-01	Maison des Espagnols			332	203	000	332	1 1 0 1
62118-ISA-0002-01	Ets Frankignoul			323	203	101	001	1 1 1 1

3. Change detection – Phase 1 (22 sites)

- Performance assessment:
 - tried around 200 combinations (different features, smoothing, segmentation)
- Findings:
 - smoothing is necessary to avoid overfitting
 - at least one Sentinel-1 feature (buildings) and one Sentinel-2 feature (vegetation/soil)
 - more than 4 features \rightarrow overfitting
 - segmentation does not bring significant improvement (further tests on the full dataset needed)


3. Change detection – Phase 1 (22 sites)

Results (features: sigma0, NDVI)

Ħ	Year	ТР	FP	FN	TN	TPR	FPR	F ₁ -score
feat	2016/2017	3	1	4	14	43%	7%	0.55
¥.	2017/2018	1	1	10	10	9%	9%	0.15
a	2018/2019	0	0	6	16	0%	0%	0
Sigma0	2019/2020	1	1	6	14	14%	7%	0.22
S	2016-2020	5	3	26	54	16%	5%	0.26
	Year	ТР	FP	FN	TN	TPR	FPR	F ₁ -score
Ħ	2016/2017	3	0	4	15	43%	0%	0.55
_feat	2017/2018	8	2	3	9	73%	18%	0.76
INDN	2018/2019	2	2	4	14	33%	13%	0.40
z,	2019/2020	3	0	4	15	43%	0%	0.60
	2016-2020	16	4	15	53	52%	7%	0.63
2	Year	ТР	FP	FN	TN	TPR	FPR	F ₁ -score
feat	2016/2017	6	1	1	14	86%	7%	0.86
	2017/2018	8	3	3	8	73%	27%	0.73
² ¹ ∂	2018/2019	3	1	3	15	50%	6%	0.60
+ NDVI	2019/2020	3	0	4	15	43%	0%	0.60
0	2016-2020	20	5	11	52	65%	9%	0.71

3. Changepoint detection – Example

"Service voirie d'Angleur", Liège

3. Change detection – Phase 2 (All sites)

• Ground truth (orthophotos 2016-2018)

ID_Segment	Site Name	SAR_Ortho_GroundTruth		SAR_Ortho 018 (% for e		Change
		CODE	Vegetation	Building	Soil	
52011-ISA-0015-01	Administration Cockerill	000	0	0	0	0
52011-ISA-0032-01	Cinéma-Théatre Varia	000	0	0	0	0
52011-ISA-0040-01	Cordial Bowling	203	100	0	-100	1
52012-ISA-0011-01	Hangars Vanbelle	332	-5	-35	40	1
52021-ISA-0007-01	Charbonnage de Soleilmont	000	0	0	0	0
52021-ISA-0008-01	Charbonnage du Petit-Try	000	0	0	0	0
62003-ISA-0004-01	Ets Fraikin	000	0	0	0	0
62063-ISA-0034-01	Renory Zone A	232	5	-30	25	1
62063-ISA-0037-01	Parking Jonfosse	323	-10	100	-90	1
62063-ISA-0098-01	Boliden - Cuivre et Zinc	000	0	0	0	0
62063-ISA-0181-01	Centre sportif du Grand Séminaire	000	0	0	0	0
62063-ISA-0189-01	Cigares Grétry Taf	000	0	0	0	0
62063-ISA-0201-01	Bâtiment de la rue Pré Binet	000	0	0	0	0
62063-ISA-0230-01	Marché couvert d'Amercoeur	203	15	0	-15	1
62063-ISA-0247-01	Service voirie d'Angleur	032	0	-35	35	1
	Puits de mine - rue Renson	000	0	0	0	0
62096-ISA-0038-01	Verreries Liégeoises	203	70	0	-70	1
62096-ISA-0039-01	Ets Linotte	332	-5	-50	55	1
62096-ISA-0056-01	Maison des Espagnols	232	5	-10	5	1
62118-ISA-0002-01	Ets Frankignoul	223	25	15	-40	1
52012-ISA-0017-02	Charbonnage nº10 du Gouffre	000	0	0	0	0
62096-ISA-0052-02	Haut Fourneau 6	032	0	-20	20	1
25005-ISA-0001-02	Hangar La Comete	000	0	0	0	0
25005-ISA-0003-01	Entreprise de voirie Van Brabant	011	0	0	0	1
25014-ISA-0001-01	Entrepôts militaires à Lillois	302	-5	0	5	1
25014-ISA-0002-01	Etablissement Stiens Roger	203	35	0	-35	1
25014-ISA-0003-01	Établissement Defalque et fils	000	0	0	0	0
25014-ISA-0005-01	Filature de coton Allard	001	0	0	0	1
25014-ISA-0007-01	Établissements Denolin nº1	000	0	0	0	0
25014-ISA-0009-01	Tannerie Disbeck	032	0	-100	100	1

3. Change detection – Phase 2 (All sites)

• Results (2291 sites)

Features	ТР	FP	FN	TN	TPR	FPR	F ₁ -score
NDVI-NDWI2-VH-VV	973	672	240	406	80%	62%	0.68
NDVI-NDWI2-VH	943	626	270	452	78%	58%	0.68
NDVI-NDWI2-VV	932	629	281	449	77%	58%	0.67
NDVI-VH-VV	751	414	462	664	62%	38%	0.63
NDWIZ-VH-VV	619	308	594	770	51%	29%	0.58
NDVI-VH	677	349	536	729	56%	32%	0.60

• Results (1922 sites > 500m²)

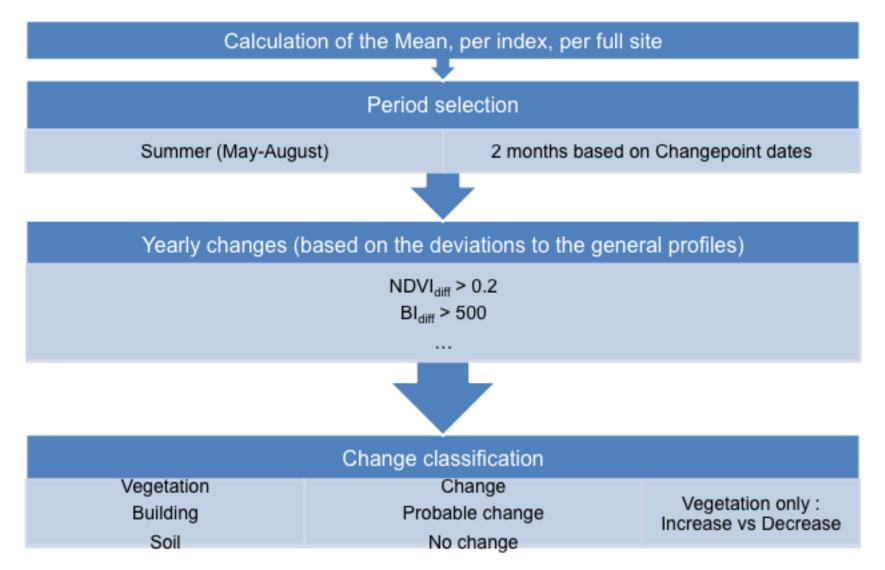
Features	ТР	FP	FN	TN	TPR	FPR	F ₁ -score
NDVI-NDWI2-VH-VV	908	541	195	278	82%	66%	0.71
NDVI-NDWI2-VH	880	509	223	310	80%	62%	0.71
NDVI-NDWI2-VV	869	510	234	309	79%	62%	0.70
NDVI-VH-VV	698	343	405	476	63%	42%	0.65
NDWI2-VH-VV	574	244	529	575	52%	30%	0.60
NDVI-VH	631	290	472	529	57%	35%	0.62

3. Change Detection – What's next

- Analysis and removal of FPs/FNs
 - Correlation between errors and
 - vegetation seasonality
 - type of change
 - size of the RDS
- Segmentation
 - New tests for the entire dataset
 - due to the heavy workload, a hybrid approach where only big sites are segmented will be considered

Investigations

- General:
 - Sentinel-2 data
 - Terrascope capabilities
- What:
 - 22 test sites
 - 13 indexes:
 (NDVI, SAVI, NDWI, NDWI2, NDBI, NBAI, NBI, BAI, BI, BI2, CI, BSI & SBI)
 - Tests on full sites as well as on IBA, PICC, PICC&Grid, Grid_Only & WALOUS segmentations
 - Mean, Median and Standard-deviation calculation


 \rightarrow profile analysis to determine the best way to qualify the changes

Methodology

- Focus on the Vegetation, Building & Soil classes
- 5 indexes selected :
 - Normalized Vegetation Index (NDVI)
 - Built-up areas index (BAI)
 - Brightness Index (BI)
 - Second Brightness Index (BI2)
 - Soil brightness index (SBI)
- \rightarrow Mean per index per full site
- → Determination of the general profile per index and deviations indicating changes
- \rightarrow Yearly comparison

4. Change Classification

Methodology

Ground Truth: 214 sites

- Ortho-photos
 - Selection of sites (from the SAR project) with the most important changes (> 500m²)
 - Summer 2016 to summer 2018 changes
 - Spread all over Wallonia
- Pleiades images
 - Sites with changes and with no changes
 - Summer 2019 to summer 2020 changes
 - All the site in Liège area for which we have images
- Type of Changes:
 - Increase & decrease for vegetation
 - Change for building and soil

Source	Vegetation	Building	Soil
Ortho-photos	72	70	82
Pleiades	6	6	5
TOTAL	78	76	87

Results

Type of change	Ground truth	Change properly classified	True Positive Rate
Vegetation change	78	74	95%
Vegetation Increase	13	11	85%
Vegetation Decrease	63	65	97%
Building	76	30	39%
Soil	87	62	71%

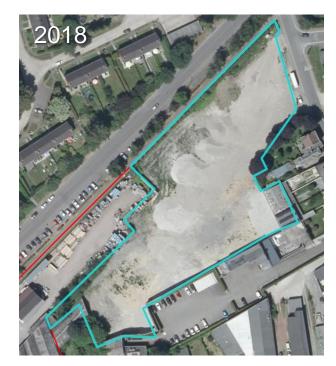
\rightarrow confusion between building & soil

Type of change	Ground truth	Change properly classified	True Positive Rate
Building & Soil	102	80	78%

Class	Vegetation	Building	Soil	No Change	Total	Commission Errors
Vegetation	74	0	0	0	74	0%
Building	0	30	13	1	44	32%
Soil	0	27	62	2	91	32%
No Change	4	19	12	398	433	8%
Total	78	76	87	401	642	
Omission Errors	5%	61%	29%	1%		OA = 87.9%

Example of results

- Site with vegetation & building & soil changes (ortho 2016-18)
 - Vegetation: "decrease"
 - Building: "change"
 - Soil: "probable change"



84033-ISA-0006-01 Brasserie Pierrard

Example of results

- Site with vegetation & building & soil changes (ortho 2016-18)
 - Vegetation: "decrease"
 - Building: "change"
 - Soil: "probable change"

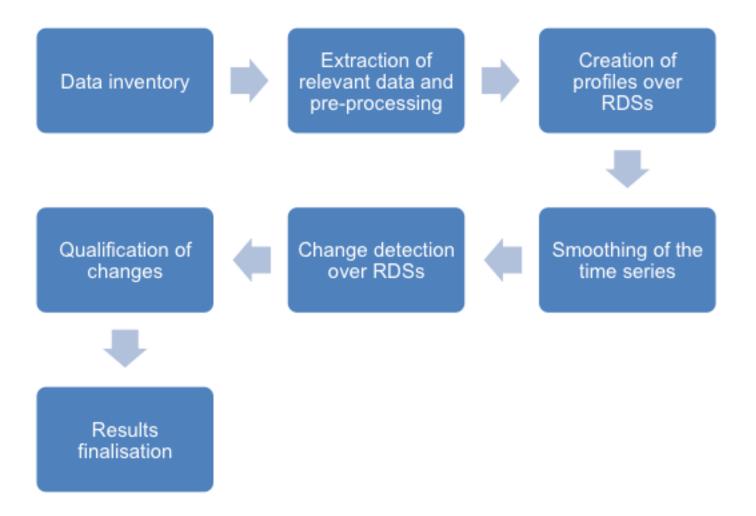
62038-ISA-0012-01 Abattoir de porcs Marquet-Lovinfosse

What's next

- Investigation for the building type of change
 - Modifications in the calculation of standard profile deviation
 - Combination of features to create one indicator for building & soil
- Results for the entire dataset
- Type of change determination outside summer
 - → Analysis of all the RDS for which we have a change date (obtained in the change detection phase) and Pleiade images as ground truth

Additional information

- Amplitude of the change
 - Use of the change/Probable change indicator
 - Use of the value of the standard profile deviation
- Confidence in the change
 - Higher confidence when a type of change is detected
 - Higher confidence to the type of change detection when summer information
 - Confidence depending on the amplitude of the change


What platform do we use to develop the tool?

- Belgian contribution to the Sentinel Collaborative Ground Segment
- Virtual Research Environment (python)
- Availability of preprocessed S1 & S2 images
- Likely « modest » processing requirements
- Long-term maintenance

5. Platform integration

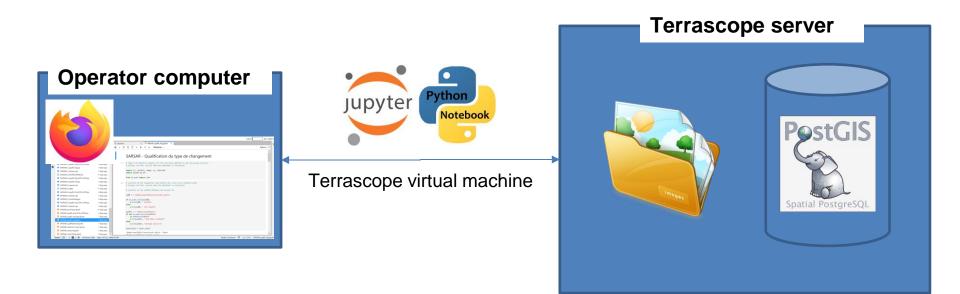
What will the final tool do ?

5. Platform integration

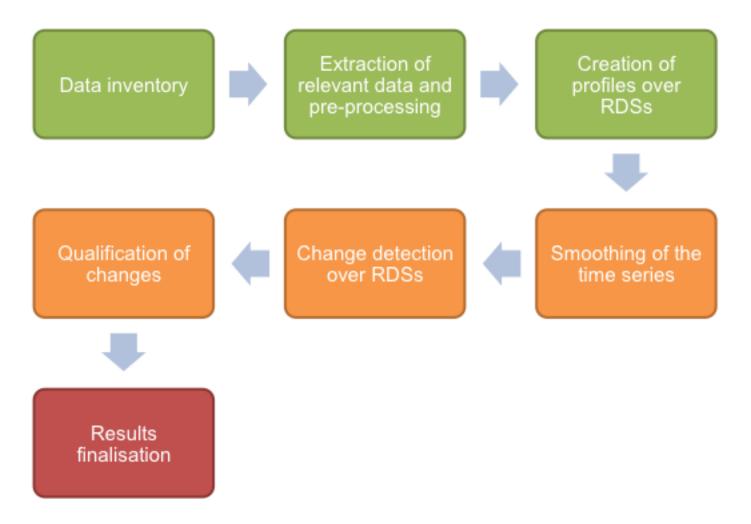
1. 'SQLite' method Terrascope standard package

- + Compatible with the standard
 Terrascope package
- Less stable
- Less efficient (long computation time because it requires a lot of disk accesses)
- SQLite is only accessible to one person (or software) at a time

→ Research and development phase


2. 'PostGIS' methodTerrascope + PostGIS/PostgreSQL

- + More stable
- + More efficient
- + PostgreSQL is accessible to several people (or software) at the same time
 + More development perspectives (ex. Webservice)
- Requires resources that are not part of the standard package for Terrascope users
- Use of more qualified personnel for implementation and maintenance


→ Production phase

Final choice : 'PostGIS' Method

- Semi-automatic
- Controlled by the operator

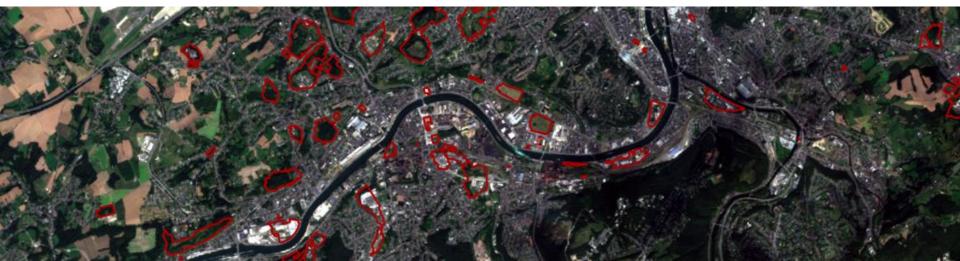
Where are we now with the 'PostGIS method'?

Valorisation/knowledge sharing ?

- → Publication of software and VM configuration:
 - to provide the opportunity for the community to access the developments made in the framework of our project
- → Terrascope Jupyter notebook:

Production of an operational example of Jupyter Notebook meant to be reused in other projects

SARSAR – SR/00/372



belspo

Automatic redevelopment sites monitoring using SAR and OPTICAL images

WP4 – Technology transfer WP5 – Dissemination

Steering Committee Meeting - 19th March 2021

WP4 – Technology transfer

User Manual & Training Session

- Description:

- "<u>Transfer the developed tool to the end-user</u>. This imply regular meeting with the end-user to fine-tune the tool to his need. It also consists in ensuring the end-user is actually able to use the tool, that the end-user is able to understand the results provided by the tool and understand the limitations."
- Objectives:
 - "Guarantee the tool fits the need of the end user"
 - "<u>Guarantee the end-user can use the tool</u>, understands its results and its limitations"
- Methodology:
 - "<u>user manual</u> will be written describing how to use the tool, the environmental requirements (IT infrastructure), how to interpret the results and the limitation of the tool;
 - In addition, <u>training sessions</u> on how to use the tool will be organised."

WP4 – Technology transfer

- Documentation on the methodology:
 - Information on Terrascope Interface
 - Jupyter Notebooks for Python scripts
 - Information on the 'PostGIS' method

- Documentation on the results:
 - User manual in pdf

WP4 – Technology transfer

- Meetings with the users to fine-tune the technology transfer
- Nice to have:
 - WFS
 - Alert system on the RDS website
- Trainings (Face-to-face):
 - ½ to 1 day
 - Theoretical and practical parts
 - Working Groups
- \rightarrow Depending on the Covid-19 situation
- \rightarrow Project prolongation?

Publication & User workshop

- Description:
 - "Redaction of scientific papers and contribution to conferences and workshops, organization of a seminar for the Walloon Region / DGO4."
- Objectives:
 - "To disseminate the results"
 - "To show the capabilities of the service to the users."
- Methodology:
 - "Redaction of scientific papers and contribution to conferences and/or workshops"
 - "Organisation of a seminar to show the service to other potential users."

- Past conferences and workshops
 - GT-COWal, November 2019: first introduction to the Walloon region actors
 - Belgian Earth Observation Day 2019
 - URSI Benelux Forum 2019
 - CISS Lecture Series 2020
- Future conferences and workshops
 - EARSeL Liège 2021, March 2021: EO for sustainable cities and communities
 - IGARSS 2021
 - Organized special session "Sentinel-1/2 Multi-Temporal Analysis and Change Detection" → accepted and included in the program
 - Submitted a paper on SARSAR \rightarrow accepted as oral presentation⁴

- Planned conferences and workshops (depending on the Covid-19 situation)
 - GT-COWal
 - GTEO
 - User workshops for the Walloon Region
 - Valorization of the developments conducted in the Terrascope environment

Collaboration with other projects

- SARSAR is deeply linked to the SAR project
 - CHANGE DETECTION ANALYSIS ON WALLOON BROWNFIELD SITES presented in "THE EVER GROWING USE OF COPERNICUS ACROSS EUROPE'S REGIONS, A selection of 99 user stories by local and regional authorities", 2018
 - Video presented by Mr. Christophe Rasumny and Dr. Eric Hallot about how Sentinel-2 data are being used to support inventory and monitor the evolution of brownfield sites in Wallonia, 2019 (https://www.nereus-regions.eu/copernicus4regions/videos-2/wallonia/)
 - LE VIF, numéro 07, 18.02.2021. Mention of the SAR and SARSAR projects

Thank You

