

SARSAR – SR/00/372

Automatic redevelopment sites monitoring using SAR and OPTICAL images

Project Description

Overview

- 1. Context
- 2. Feasibility study
- 3. Proposed approach
- 4. Implementation
- 5. Programme of work

1. Context

 RDS = "Redevelopment Sites" (disused sites) (SAR = "Sites À Réaménager")

 \rightarrow real estate property or a set of real estate properties:

- That was or is allocated to host an activity apart from housing
- Whose current condition is against the good management of the site or represents a deconstruction of the urban canvas

1. Context

- RDS Inventory
 - General objectives:
 - Finding the most suitable sites for:
 - Real estate projects
 - Economic activities
 - For particular purposes (e.g. along waterways/railways)
 - Support for:
 - Walloon Government's socio-economic policy
 - Spatial planning policies
 - Need of the Walloon Public Service / DG04:
 - Periodic update of the RDS Inventory (2213 sites on nearly 3800 hectares in 2017)

1. Context

- RDS Inventory update
 - Current Methodology:
 - Systematic review: change of status verification (RDS or not RDS) by survey with the communes and field visit (human resources = 6 full-time / 2 years)
 - Lack of resources = too long periodicity
 - From 2018 → use of aerial images: photo-interpretation by an operator to detect and qualify change on all sites (ISSeP)
 - Need for improvement → Automatic detection of changes
 from satellite images at high temporal resolution

- Conducted as part of a previous ISSeP & RMA activity
- Using high spatial resolution data
 - Data: Lidar, Aerial Orthophotos (AOP), Pleiades
 - Photogrammetry -> nDSM
 - + change detection
- Using high temporal resolution data
 - Data: Sentinel1/Sentinel-2
 - Sigma0/Spectral indexes
 - + change detection

Normalized Digital Surface Model changes

AOP 09/10

Change in height Change in neighboring of the site → indication of future changes?

• Normalized DSM changes

CONFIRMATION!

Changes of Sentinel-2 Band ratios

- 1. Ground modification
- 2. Sealing surface creation
- 3. Road construction

NDVI

SAVI

BI2

Optical resolution issue? (Sentinel 2)

TSAVI

2. Change of coating layer colour

SARSAR - Automatic redevelopment sites monitoring using SAR and OPTICAL images - Project Description

2. Feasibility study

Synthetic aperture radar (Sentinel 1)

No more backscattering from buildings after demolition

- Lessons learned:
 - Difficulty to obtain VHR data
 - Sentinel spatial resolution seems good enough
 - Expert knowledge required / manual intervention
 - A database of actual changes is necessary to validate a method → now available!

- Goal: Develop an operational tool to
 - Systematically analyze the (2000+) sites
 - Regularly (every month)
 - Assess (probability of) changes for each site
 - Update inventory with quantitative / qualitative information
 - Probability of change
 - Given the measurements, what is the probability a change occurred?
 - Type of change
 - Cut vegetation / building change / ...
 - Provide a "priority list" of the sites to further analyze
 - To confirm interpretation
 - Using VHR
 - Or on-site visit

- Methodology:
 - Exploitation of
 - Sentinel-1 time series (sigma naught, textures, ...)
 - Not affected by cloud cover \rightarrow higher temporal resolution
 - Sentinel-2 time series (spectral indexes, textures, ...)
 - Process
 - Extract feature vectors
 - Rule-based classification
 - Produce report & update state (of each site)

- Feature Extraction:
 - Adaptive Feature Aggregation
 - Feature vector of variable size

• Classification:

Rule 1: (σ_t is low AND σ_{t-1} is high) AND (BI_t is high AND BI_{t-1} is low) \rightarrow building demolition **Rule 2**: (σ_t is high AND σ_{t-1} is low) AND (NDVI_t is high AND NDVI_{t-1} is low) \rightarrow vegetation growth ... **Rule N**: (σ_t is ... AND σ_{t-1} is ...) AND (NDWI_t is ... AND NDWI_{t-1} is ...) \rightarrow ...

confidence parameter

- Evaluation of the performance of the tool
 - Using historical data
 - Aerial Orthophotos (2016, 2018) & Pleiades
 - The current inventory database
 - Separation between learning and validation dataset

4. Implementation

- Technical side
 - Platform: Terrascope (Belgian CGS)
 - Virtual Research Environment (python)
 - Availability of S1 & S2 images
 - Likely « modest » processing requirements
- Long-term maintenance
 - Extension of existing structural/contractual relationship between SPW and ISSeP.
 - RMA may be a subcontractor of ISSeP

4. Implementation

- Organizational / Structural
 - Fits within tasks of SPW/DGO4/DAO
 - Personnel for ground-truth collection
 - Day-to-day operation
 - Exploitation of the "reports"
 - Resources of SPW/DGO4/DiGIT
 - Integration in the existing IT workflow
 - Automation of the exploitation of the "reports"
 - \rightarrow List of sites to visit, priorities, "quicklooks", ...

4. Implementation

- Knowledge transfer
 - Communicate about the tool
 - Fine-tuning of requirements
 - Interfaces, performance
 - What are the expected inputs
 - What is the expected output
 - What are the limitations of the tools
 - Channels
 - User workshop
 - User / installation manual
 - Training session(s)

SARSAR - Automatic redevelopment sites monitoring using SAR and OPTICAL images - Project Description

5. Programme of work

Work package	YEAR 1							YEAR 2													
WP 0:																					
WP 1:																					
WP 2:																					
WP 3:																					
WP 4:																					
WP 5:																					

SARSAR - Automatic redevelopment sites monitoring using SAR and OPTICAL images - Project Description

5. Programme of work

Deliverables

WP0: Project management & coordination	
D0.1: Kick Off report	T0 + 1M
D0.2: Midterm report	T0 + 13M
D0.3: Final report	T0 + 24M
WP1: Users' Needs	
D1.1: User Requirements Document	T0 + 3M
WP2: Dynamic Monitoring of Redevelopment Sites	
D2.1: Tool for the dynamic monitoring of redevelopment sites	T0 + 21M
WP3: Validation and platform integration	
D3.1: Performance assessment report	T0 + 24M
D3.2: EO service for the dynamic monitoring of redevelopment sites	T0 + 24M
WP4: Technology transfer	
D4.1: User manual, including examples and analysis of the performance of the tool	T0 + 24M
D4.2: Hands-on training session on how to use the tool	T0 + 24M
WP5: Dissemination	
D5.1: User workshop for the Walloon Region	T0 + 24M
D5.2: Draft paper on dynamic monitoring of redevelopment sites	T0 + 24M

Team

• SPW / DG04

Christophe Rasumny

- Royal Military Academy
 - Xavier Neyt
 - Mattia Stasolla
- ISSeP
 - Eric Hallot
 - Sophie Petit
 - Gerard Swinnen

SARSAR - Automatic redevelopment sites monitoring using SAR and OPTICAL images - Project Description

belspo

Thank You