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ABSTRACT 
 
The Walloon Region is currently managing a database of 
more than 2000 ‘redevelopment sites’, i.e. urban sites that 
were previously used for industrial activities and/or housing 
and that are now abandoned. The administration needs to 
keep this inventory up-to-date so that the necessary urban 
planning could be done; however, at the moment, this 
information is obtained via time-consuming on field 
campaigns. Thanks to the launch of the Copernicus 
programme, free satellite data are now provided at high 
temporal resolution, and new monitoring approaches can be 
implemented. Leveraging a well-established changepoint 
detection method, this paper shows some preliminary results 
on how time series of Sentinel-1 and Sentinel-2 data could 
be jointly used to automatically detect changes in urban 
areas, thus providing the Walloon Region with a tool that 
can be exploited for a more efficient management of the 
‘redevelopment sites’. 
 

Index Terms— change detection, time series, urban 
area, Sentinel-1, Sentinel-2. 
 

1. INTRODUCTION 
 
In the 19th century Wallonia was a highly developed 
industrial region, whose activities were mainly related to 
coal, metal and textile production. From the 1950s, the 
deindustrialization of the region led to a progressive 
abandonment of factories and other production sites. In this 
paper, we will refer to these areas as redevelopment sites 
(RDSs). If on the one hand, the presence of RDSs negatively 
impacts on the urban fabric, on the other hand it represents 
an opportunity for sustainable urban planning. To this end, 
the Walloon Region is currently managing a publicly 
available inventory of the RDSs [1] in order to provide up-
to-date information about the sites that have been 
regenerated and those that are still in disuse. At the moment, 
the inventory contains more than 2200 sites, and updating it 
is costly and time-consuming, as it is mainly done through 
on field campaigns and/or manually analysis of aerial 
orthophotos. Moreover, since most of the sites tend to 
remain unchanged (it is estimated that less than 10% would 

change from one year to the next), it is important to ensure 
that the visits are prioritized according to the actual needs in 
order to optimize the available resources.  
Thanks to the Copernicus programme, which is freely 
distributing Sentinel-1 and Sentinel-2 data, new 
opportunities have been opened up, and a more efficient 
management of the RDS inventory is now possible. Several 
studies have investigated and highlighted the potential that a 
combination of these two complementary sensors has for 
urban area mapping and vegetation monitoring [2],[3]. 
Moreover, the short revisit time that the Sentinel satellites 
can guarantee enables a consistent and detailed analysis of 
changes over time. 
The goal of the paper is therefore to discuss how Sentinel-1 
and Sentinel-2 time series could be exploited to develop a 
tool for the automatic monitoring of RDSs.  
 

2. METHODOLOGY 
 
2.1 Study Area 
 
The analysis here presented focuses on a subset of the whole 
RDS database and it comprises 22 sites chosen within the 
areas of Liège and Charleroi. This allowed us to specifically 
cover all the types of changes in which we were interested. 
According to the needs of the Walloon Region, these 
include changes (increase/decrease) in buildings, vegetation 
and soil. The map of the RDSs under study is shown in 
Fig. 1, which also provides three examples of possible 
changes. 
 
2.2 Sentinel data 
 
For this study, all the Sentinel-1 and Sentinel-2 data from 
June 2016 to June 2020 have been analyzed. The processing 
has been carried out in cloud computing via Terrascope [4], 
the Sentinel Collaborative Ground Segment for Belgium. 
As far as the Sentinel-1 products are concerned, the 
Terrascope catalogue, along with the original 
Interferometric Wide (IW) Single Look Complex (SLC) and 
Ground Range Detected (GRD) images, also contains the 
corresponding calibrated and orthorectified sigma0 
products, whose VH bands have been used for the analysis. 



 
Fig. 1. (a) Spatial distribution of the RDSs in Wallonia (red 
marks). In green, the areas studied in this work; (b) Close-ups of 
three RDSs located in Liège, showing some possible types of 
change: building demolition (left), vegetation increase (center), and 
building construction (right). 

 
For each image, the average sigma0VH of each RDS has 
been computed. Since an RDS is typically present in images 
taken from 3 to 4 different passes of the satellite (both 
ascending and descending), the final time series has been 
obtained by averaging the backscattering profiles of the 
multiple observations. 
As regards the Sentinel-2 data, the platform contains 
atmospherically corrected images, obtained from L1C 
products that have been processed using iCOR [5]. For each 
image, a Sen2Cor scene classification is also provided. After 
discarding the images with more than 25% cloud cover and 
removing the pixels classified as clouds or shadows in the 
remaining ones, the average Normalized Difference 
Vegetation Index (NDVI) for each site is calculated and 
used to populate the time series. 
Both Sentinel-1 and Sentinel-2 time series are first linearly 
interpolated (1 sample per day) to fill the data gaps and then 
smoothed using a Gaussian kernel with a standard deviation 
of 61. The smoothing of the temporal profile is expected to 
reduce the effect of speckle noise in SAR data and 
compensate for the values in the Sentinel-2 time series that 
are missing due to cloud cover.  

2.3 Ground Truth 
 
Every summer the Walloon Region organizes an aerial 
survey to acquire orthophotos (25 cm resolution) of the 
entire territory. Based on the orthophotos available for the 
years 2016, 2017, 2018, 2019, and together with two 
Pleiades images (4-band pan-sharpened products at 0.5 m 
resolution) taken in June 2020, a ground truth has been 
created by visual analysis. For each of the 22 RDSs, year-
on-year changes in vegetation, buildings and soil were 
recorded. A breakdown into types of change is reported in 
Table 1. The last column of the table (‘Aggregate’) shows 
the total number of changes when multiple changes per site 
are counted as a unique change (e.g. if from one year to the 
next, an RDS is assigned both a building and a vegetation 
change, this would count as a single change). In the 4-year 
span we counted 31 changes out of 88 possible cases. The 
‘no change’ occurrences are therefore 57. This information 
will be used in Section 3 for the performance assessment. 
 

Table 1. Ground truth: number of changes and breakdown into 
change types. 

Year Building Vegetation Soil Aggregate 
2016/2017 5 6 7 7 
2017/2018 3 8 11 11 
2018/2019 2 4 5 6 
2019/2020 2 5 6 7 
2016-2020 12 23 29 31 

 
2.4 Time series change detection 
 
The approach used in this paper to address the change 
detection problem is based on changepoint analysis, which 
is largely employed for the study of time series in many 
application domains, from speech processing to climatology 
[6]. As far as satellite remote sensing is concerned, this 
remains a rather unexplored topic [7], although in recent 
years the availability of archives of imagery has increasingly 
drawn the attention to this family of techniques [8],[9]. 
Leveraging the large amount of data that is now supplied by 
the Copernicus programme, the idea is to apply changepoint 
detection to time series of features extracted from Sentinel-1 
and Sentinel-2 images.  
There are three main reasons behind the choice of this type 
of approach. First, changepoint detection has proved 
valuable in many applications, yet it is still underexploited 
in remote sensing. Second, the methodology is unsupervised 
and requires no a priori knowledge. Considering the low 
change rate of the RDSs, if we were to opt for supervised 
learning, we might not be able to collect a sufficient number 
of training samples. Third, depending on the chosen 
changepoint detection algorithm, the methodology can be 
computationally efficient. 
Amongst the others, the Pruned Exact Linear Time (PELT) 
method is a well-established algorithm for changepoint 
detection proposed in 2012 by Killik et al. [10]. It provides 



an exact segmentation of the time series with a linear time 
complexity. Given a time series s = (s1,…,sk), the number n 
and time position t1:n= (t1,…,tn) of the changepoints is 
obtained by solving the penalized minimization problem:  

Qn (s1:k, p) =min
n,t1:n

[C(s(ti−1+1):ti
i=1
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where C is a segment-specific cost function, and p a penalty 
term to control overfitting. In our analysis, the least squares 
cost function and a penalty term p=log(k) have been used. 
 

3. RESULTS 
 
The performance of the presented method is assessed in 
terms of true positive rate (TPR) and false positive rate 
(FPR). The overall problem can be in fact seen as a binary 
classification where either a ‘change’ (1) or a ‘no change’ 
(0) has to be detected. As we discussed in the previous 
Section, in order to compare the results with the ground 
truth, the latter has been coded so that any yearly change in 
any of the 3 classes (building, vegetation, soil) is assigned 
the value 1; in the case of no change for all the 3 classes, the 
ground truth is given the value 0. A confusion matrix is then 
generated so that the number of true positives (TPs), true 
negatives (TNs), false positives (FPs) and false negatives 
(FNs) could be used to compute the TPR and FPR. To 
provide a unique measure that takes into account both 
detection and miss rates, the F1-score has also been 
calculated.  
 
3.1 Sentinel-1 change detection 
 
The results obtained using the Sentinel-1 sigma0VH feature 
are reported in Table 2. Each row indicates the changes that 
have been detected in each 1-year interval from 2016 to 
2020. The aggregate values for the 4-year period are 
reported in the last row. Overall, the performance is not 
satisfactory. Although the number of FPs remains quite low 
(it corresponds to an FPR of only 5%), the high number of 
FNs biases the results and limits the TPR to 16%. This is 
reflected in a low F1-score (0.26). Some explanations for 
such behavior are the resolution of the images (about 20 m), 
which can significantly limit the sensitivity with respect to 
small changes, and the nature itself of the sensor, which is 
less effective when it comes to detecting changes such as the 
transition from bare soil to grass. If we look at the values 
obtained in each 1-year interval, we can notice that the 
performance can significantly vary depending on the type 
and combination of changes that have occurred in a certain 
year. In particular, between 2016 and 2017, 5 out of 7 
changes were related to buildings, to which SAR is more 
sensitive, yielding a TPR of 43% and an F1-score of 0.55. 
The 2017-2020 changes, instead, were mainly due to 
differences in vegetation and soil, causing a higher number 
of FNs and therefore a significant drop-off in the F1-score. 

Table 2. Sentinel-1 (sigma0VH feature) changepoint analysis: 
confusion matrix and performance metrics. 

Year TP FP FN TN TPR FPR F1-score 
2016/2017 3 1 4 14 43% 7% 0.55 
2017/2018 1 1 10 10 9% 9% 0.15 
2018/2019 0 0 6 16 0% 0% 0 
2019/2020 1 1 6 14 14% 7% 0.22 
2016-2020 5 3 26 54 16% 5% 0.26 

 
3.2 Sentinel-2 change detection 
 
On the contrary, Sentinel-2, particularly using the NDVI 
feature, is expected to perform better on changes in 
vegetation/soil. Also, the available spatial resolution is 
higher: 10 m. The expectations are confirmed looking at the 
results presented in Table 3. As can be seen, the errors are 
almost evenly spread out over the 4 years, with slight 
fluctuations mainly due to the fact that the number of 
changes per year is not constant. The overall performance is 
satisfactory, with an average TPR of 52% and an FPR of 
7%. The F1-score is on average 0.63. 
 

Table 3. Sentinel-2 (NDVI feature) changepoint analysis: 
confusion matrix and performance metrics. 

Year TP FP FN TN TPR FPR F1-score 
2016/2017 3 0 4 15 43% 0% 0.60 
2017/2018 8 2 3 9 73% 18% 0.76 
2018/2019 2 2 4 14 33% 13% 0.40 
2019/2020 3 0 4 15 43% 0% 0.60 
2016-2020 16 4 15 53 52% 7% 0.63 

 
3.3 Sentinel-1 and Sentinel-2 change detection 
 
To benefit from both SAR and multi-spectral sensors’ 
characteristics, we finally tested the joint use of sigma0VH 
and NDVI. The merging is possible directly at the input 
level by feeding PELT with a bi-dimensional time series. 
A detailed example of how the change detection accuracy 
can be improved by using both features is shown in Fig. 2, 
which presents the full processing for one of the RDSs. 
According to the ground truth orthophotos in Fig. 2(a), a 
building has been removed between summer 2017 and 
summer 2018, and vegetation has progressively grown 
between summer 2018 and summer 2019. If we only use the 
sigma0VH time series (Fig. 2(b)), we are able to correctly 
detect the building demolition, but we have no means of 
spotting the change in vegetation. Conversely, as shown in 
Fig. 2(c), by exploiting the NDVI we can identify the 
change date in 2019, but we miss the one in 2017. Finally, if 
we provide as input both the features, the changepoint 
detection successfully returns the two dates (Fig. 2(d)).  
The results for the whole dataset are provided in Table 4. As 
can be seen, the combination of the two features has mainly 
an impact on the detection of the changes with which one 
single feature was not able to cope.  



 
Fig. 2. Changepoint analysis for the RDS “Service voirie 
d'Angleur” in Liège. (a) Ground truth (left: summer 2017, center: 
summer 2018, right: summer 2019); (b) Sentinel-1 time series 
(sigma0VH feature); (c) Sentinel-2 time series (NDVI feature); (d) 
Bi-dimensional time series (sigma0VH and NDVI). 

Table 4. Sentinel-1 and Sentinel-2 (sigma0VH and NDVI features) 
changepoint analysis: confusion matrix and performance metrics. 

Year TP FP FN TN TPR FPR F1-score 
2016/2017 6 1 1 14 86% 7% 0.86 
2017/2018 8 3 3 8 73% 27% 0.73 
2018/2019 3 1 3 15 50% 6% 0.60 
2019/2020 3 0 4 15 43% 0% 0.60 
2016-2020 20 5 11 52 65% 9% 0.71 

 
In general, the number of FNs decreases as more changes in 
building or vegetation/soil are detected thanks to Sentinel-1 
and Sentinel-2, respectively. To quantify the improvements 
achieved with the data fusion, we can use as a baseline the 
results obtained with the NDVI feature, which provided the 
highest F1-scores. As can be seen, other than for the year 
2017/2018, where the presence of an additional FP is 
slightly lowering the F1-score, for all the other 1-year 
intervals the F1-scores are greater or equal than the 
corresponding NDVI-only ones. If we look at the entire 
period of time, the TPR increases by more than 10 
percentage points (pp), while the FPR only increases by 2 
pp, yielding an F1-score of 0.71. 
 

4. CONCLUSIONS 
 
In this paper, the PELT method was applied to Sentinel-1 
and Sentinel-2 time series in order to automatically detect 
changes in urban areas. The starting point was to provide the 
Walloon Region with a change detection tool that could help 
them managing in a more efficient way their database of 

redevelopment sites, for example by prioritizing the on-site 
visits according to a ranking list automatically generated. 
The presented results, based on a subset of 22 RDSs, 
suggest that by combining radar and multi-spectral 
information it is possible to identify changes with a 
relatively good precision, given that there are inherent 
limitations due to the spatial resolution and characteristics of 
the sensors. Further tests for the whole set of 2000+ RDSs 
are now needed to confirm these preliminary results. Also, 
the use of additional features such as the VV band and other 
spectral indexes will be studied in order to improve the 
overall accuracy. Finally, different types of spatial 
segmentation will be investigated, as the size of the RDSs 
may vary considerably and only localized changes might 
occur. 
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